

# Зелакс ГМ-2

Руководство пользователя ГМ-2-IMUX

Система сертификации в области связи Сертификат соответствия Регистрационный номер: ОС-1-СПД-0019

© 1998 — 2010 Zelax. Все права защищены.

Редакция 05 от 29.10.2010 г. ПО 2.4.5а2

Россия, 124681 Москва, г. Зеленоград, ул. Заводская, дом 1Б, строение 2 Телефон: +7 (495) 748-71-78 (многоканальный) • <u>http://www.zelax.ru</u> Отдел технической поддержки: <u>tech@zelax.ru</u> • Отдел продаж: <u>sales@zelax.ru</u>

## Оглавление

| 1 | Введе          | ение                                                                                                                 | 5                    |
|---|----------------|----------------------------------------------------------------------------------------------------------------------|----------------------|
| 2 | Струк          | тура и функциональное назначение составных частей изделия                                                            | 6                    |
|   | 2.1            | Порт                                                                                                                 | 6                    |
|   | 2.2            | Центральный процессор                                                                                                | 6                    |
|   | 2.3            | Коммутатор Ethernet                                                                                                  | 6                    |
|   | 2.4            | Микропереключатели                                                                                                   | 6                    |
| 3 | Моди           | фикации изделий                                                                                                      | 7                    |
| 4 | Техни          | ческие данные                                                                                                        | 8                    |
|   | 4.1            | Основные параметры                                                                                                   | 8                    |
|   | 4.2            | Функциональные возможности                                                                                           | 8                    |
|   | 4.3            | Параметры портов                                                                                                     | 9                    |
|   | 4.3.1          | Порты Ethernet                                                                                                       | 9                    |
|   | 4.3.2          | Порт Console                                                                                                         | 9                    |
|   | 4.3.3          | Порт Е1                                                                                                              | 9                    |
|   | 4.4            | Внешний вид                                                                                                          | 9                    |
|   | 4.4.1          | Перелняя панель                                                                                                      | 9                    |
|   | 4.4.2          | Залняя панель                                                                                                        | 13                   |
|   | 4.5            | Конструктивное исполнение и электропитание                                                                           | 13                   |
|   | 4.6            | Габаритные размеры и масса                                                                                           | 14                   |
|   | 47             | Усповия эксплуатации                                                                                                 | 14                   |
| 5 | Комп           | тект поставки                                                                                                        | 15                   |
| 6 | Управ          |                                                                                                                      | 16                   |
| Ŭ | 61             | Способы управления излепием                                                                                          | 16                   |
|   | 611            | Покальное управление через порт Console                                                                              | 16                   |
|   | 612            | Уладённое управление по протоколу Telnet                                                                             | 10<br>16             |
|   | 613            | Удаленное управление по протоколу Тенес                                                                              | 10<br>16             |
|   | 62             | Интерфейс пользователя и режимы работы                                                                               | 10<br>16             |
|   | 621            | Синтерфене пользователя и режимы работы                                                                              | 16                   |
|   | 622            | Контекствая справка                                                                                                  | 10                   |
|   | 623            | Сообщения об ощибках                                                                                                 | 17<br>18             |
| 7 | U.Z.J<br>Hactr |                                                                                                                      | 10                   |
| ' | 71             | Системные команлы                                                                                                    | 19<br>10             |
|   | 711            | Випионанды                                                                                                           | 10<br>10             |
|   | 712            | Изменение имени SNMP community пла итениа                                                                            | 10                   |
|   | 713            | Изменение имени SNMP community для чтения                                                                            | 10                   |
|   | 7.1.5          | Изменение ИР-апреса устройства                                                                                       | 13<br>20             |
|   | 715            | Изменение и задреса устроиства                                                                                       | 20<br>20             |
|   | 7.1.5          |                                                                                                                      | 20<br>20             |
|   | 7.1.0          | Команда изменения МАС-апреса устройства                                                                              | 20<br>21             |
|   | 718            | Загрузка нового программного обеспенения                                                                             | 21<br>21             |
|   | 7.1.0          | Оагрузка нового программного обеспечения                                                                             | 21                   |
|   | 7 1 10         | Перезагрузка устроиства                                                                                              | 22                   |
|   | 7 1 11         |                                                                                                                      | 22                   |
|   | 7 1 12         | Очистка статистики                                                                                                   | 22<br>23             |
|   | 7 1 13         | . Дооавление пользователя для доступа по протоколу тешет                                                             | 20<br>23             |
|   | 7 1 1/         | Удаление пользователя, имеющего доступ по протоколу тешес                                                            | 20<br>24             |
|   | 72             | Просмотр системици параметров                                                                                        | 27<br>24             |
|   | 721            | Вывод справонной информации                                                                                          | 27<br>24             |
|   | 72.1           | Вывод справочной информации.                                                                                         | 27<br>24             |
|   | 722            | Вывод информации о текущей конфигурации устроиства                                                                   | 2 <del>4</del><br>26 |
|   | 72.5           | Вывод Системной информации                                                                                           | 20<br>26             |
|   | 725            | Вывод ID адреса устройства                                                                                           | 20                   |
|   | 726            | вывод п ⊨адреса устроиства<br>Вывод маски полсети                                                                    | 20<br>27             |
|   | 72.0<br>727    | Вывод Ійаски подости<br>Вывод IP-аллеса шлюза по умолизнию                                                           | ، ۲ے<br>77           |
|   | 1.2.1<br>7 0 0 | Вывод и задреса шлоза по умолчанию<br>Вывод имени SNMP community для итерия                                          | ז∠<br>רכ             |
|   | 7.2.0          |                                                                                                                      | ז∠<br>דר             |
|   | 7240           | овод имени эмиг сонтнинцу для заниси<br>) Вырод информации о состоящии SNMD агонта                                   | /∠                   |
|   | 7 2 14         | и вовод информации о состоянии оплит-атента<br>Вывод информации о дользоватовах, имоющих достив во вротокову. Tolset | 20<br>ດດ             |
|   | 72             | о вывод информации о пользователях, имеющих доступ по протоколу тешег<br>Команды настройки инторфойсов E1            | ∠0<br>າດ             |
|   | 7.J            | Помалды настройки интерфенсов ст                                                                                     | 20<br>ລວ             |
|   | 1.3.1          | настроика нараметров протокола СЕС                                                                                   | ∠ð                   |

|         | 7.3.2            | Включение/выключение виртуального объединения каналов и схемы динамической          |          |
|---------|------------------|-------------------------------------------------------------------------------------|----------|
|         | подстро          | ойки пропускной способности                                                         | 29       |
|         | 7.3.3            | Настройка принадлежности портов Е1 к группе виртуального объединения каналов.       | 30       |
|         | 7.3.4            | Настройка режима синхронизации устройства                                           | 30       |
|         | 7.3.5            | Установка шлейфов ва портах Е1 устройства                                           | 31       |
|         | 7.3.6            | Автоматическое отключение портов Е1 при превышении допустимого уровня ошибо         | кв       |
|         | потоке           | G.703                                                                               | 31       |
|         | 7.3.7            | Автоматическое отключение портов Е1 при обнаружении шлейфов в портах Е1             | 32       |
| 7.      | 4 К              | оманды мониторинга интерфейса Е1                                                    | 32       |
|         | 7.4.1            | Просмотр принадлежности портов Е1 к группе виртуального объединения каналов         | 32       |
|         | 7.4.2            | Просмотр настроек виртуального объединения каналов                                  | 33       |
|         | 7.4.3            | Просмотр параметров и статистики протокола GFP                                      | 34       |
|         | 7.4.4            | Просмотр состояния виртуального объединения каналов и схемы динамической            |          |
|         | подстро          | ОЙКИ ЕМКОСТИ ЛИНИИ                                                                  | 34       |
|         | 7.4.5            | Просмотр аварий виртуального объединения каналов                                    | 35       |
|         | 7.4.6            | Просмотр режима синхронизации устройства                                            | 36       |
|         | 7.4.7            | Вывод информации о шлейфах, установленных в портах Е1 устройства                    | 36       |
|         | 7.4.8            | Вывод информации об авариях в портах Е1                                             | 36       |
|         | 7.4.9            | Просмотр ошибок CRC в потоках E1                                                    | 37       |
|         | 7.4.10           | Вывод информации о карте подключения портов Е1 локального устройства                | 38       |
|         | 7.4.11           | Вывод информации о карте подключения портов Е1 удалённого устройства                | 38       |
|         | 7.4.12           | Просмотр состояния автоматического отключения портов Е1 при превышении              |          |
|         | допусти          | имого уровня ошибок                                                                 | 39       |
|         | 7.4.13           | Просмотр состояния автоматического отключения портов Е1 при обнаружении             |          |
| _       | шлейф            | ов в портах Е1                                                                      | 39       |
| 7.      | 5 H              | астройка коммутатора Ethernet                                                       | 40       |
|         | 7.5.1            | Включение поддержки VLAN                                                            | 40       |
|         | 7.5.2            | Выключение функции поддержки VLAN                                                   | 40       |
|         | 7.5.3            | Включение/выключение портов Ethernet                                                | 41       |
|         | 7.5.4            | Настроика портов Ethernet                                                           | 41       |
|         | 1.5.5            | Дооавление нового VLAN в таолицу                                                    | 41       |
|         | 1.5.6            | Удаление VLAN из таблицы                                                            | 42       |
|         | 1.5.1            | Настроика режима расоты портов Ethernet                                             | 43       |
|         | 7.5.8            | Назначение метки VLAN и приоритетов на порту Etnernet                               | 44       |
|         | 7.5.9            | Настроика принадлежности порта Etnernet к группе для приема и передачи данных в     | на       |
| 7       |                  | ABIE HOPTBI ELHEIHEL                                                                | 40       |
| 1.      | 0 IV<br>761      | лониторинг состоянии коммутатора Ethernet                                           | 40       |
|         | 7.0.1            | Вывод Гаолицы VLAN и состояния поддержки VLAN                                       | 40       |
|         | 7.0.2            | Вывод информации о настроике портов Ethernet                                        | 47       |
|         | 761              | Вывод статистики по портах синеннес<br>Вывод информации а составнии довтор Etherpot | 41<br>10 |
| Q       | 1.0.4<br>2050/00 | о повод информации о состоянии портов сплетнет                                      | 40<br>40 |
| 0       | Devo             | а повои версии программного осеспечения                                             | 49<br>50 |
| 9<br>10 | Ferome           | пдации по устранению неисправностей                                                 | 50       |
| 10      | i apai           | אונסווטוטוטוו אוויור                                                                | 51       |

## 1 Введение

Инверсный мультиплексор (далее по тексту мультиплексор, изделие, устройство) предназначен для передачи данных Ethernet по нескольким каналам G.703 (до 16 каналов) на скорости до 31,5 Мбит/с. Мультиплексоры работают только по потокам G.703 на скорости 2048 кбит/с или через полные потоки E1 с передачей таймслотов с 0 по 31.

В схеме, представленной на Рис. 1, мультиплексоры используются для объединения двух сетей Ethernet с использованием 16 потоков G.703.



Рис. 1. Объединение двух сетей Ethernet с использованием 16 потоков G.703

# 2 Структура и функциональное назначение составных частей изделия

Изделие представляет собой базовый модуль с четырьмя портами Ethernet, портами E1 (4, 8 или 16 в зависимости от модификации), портом Console и портом Ethernet (MNT) для управления. Структурная схема мультиплексора показана на Рис. 2.



Рис. 2. Структурная схема мультиплексора

## 2.1 Порт

Порт представляет собой соединитель (разъём), к которому с помощью кабеля подключается то или иное устройство или линия связи. Порт реализует определённый интерфейс.

## 2.2 Центральный процессор

Центральный процессор — компонент, размещённый в базовом модуле и предназначенный для обработки данных, поступающих из его интерфейсов.

Центральный процессор принимает кадры Ethernet и направляет их в порты E1.

## 2.3 Коммутатор Ethernet

Коммутатор Ethernet — компонент, размещённый в базовом модуле и предназначенный для обработки данных, поступающих из его интерфейсов. На основе имеющейся у него информации коммутатор направляет кадры Ethernet в порты E1, для их передачи через сети SDH/PDH.

## 2.4 Микропереключатели

Микропереключатели размещены в базовом модуле и предназначены для выбора отображаемых ошибок портов Е1 и установки шлейфов на портах Е1 удалённого устройства.

# 3 Модификации изделий

Модификации изделий приведены в Табл. 1.

## Табл. 1. Модификации изделий

| Модификация        | Описание                                                     |
|--------------------|--------------------------------------------------------------|
| ГМ-2-IMUX-4E1-UPH  | Инверсный мультиплексор с 4 портами E1 и 4 портами Ethernet  |
| ГМ-2-IMUX-8E1-UPH  | Инверсный мультиплексор с 8 портами Е1 и 4 портами Ethernet  |
| ГМ-2-IMUX-16E1-UPH | Инверсный мультиплексор с 16 портами Е1 и 4 портами Ethernet |

## 4 Технические данные

## 4.1 Основные параметры

Основные параметры изделий приведены в Табл. 2.

#### Табл. 2. Основные параметры изделий

| Число портов Е1                            | 4, 8 или 16 в зависимости от модификации |
|--------------------------------------------|------------------------------------------|
| Число портов Ethernet для передачи данных  | 4                                        |
| Число портов Console                       | 1                                        |
| Число портов Ethernet (MNT) для управления | 1                                        |

Наработка на отказ — 40000 часов.

### 4.2 Функциональные возможности

#### Протоколы локальных сетей (LAN):

- Ethernet 10Base-T (IEEE 802.3i), 100Base-TX (IEEE 802.3u);
- VLAN 802.1Q.
- Режим моста (bridging):
  - количество поддерживаемых МАС-адресов 1024;
  - режимы работы портов: access, tag и hybrid, алгоритм работы портов Ethernet приведён на Рис. 11;
  - прозрачная передача данных Ethernet/IP;
  - максимальный размер кадра Ethernet 1916 байт;
  - возможность добавления/снятия тега VLAN ID.

#### Инверсное мультиплексирование:

- инкапсуляция GFP-F (Generic Framing Procedure-Framed) согласно рекомендации G.7041;
- поддержка виртуального объединения каналов VCAT (Virtual concatenation) и схемы подстройки емкости линии LCAS (Link Capacity Adjustment Sheme) согласно рекомендации G.7043;
- передача данных Ethernet через поток G.703 согласно рекомендации G.8040;
- передача данных Ethernet через N потоков G.703 согласно рекомендации G.7043;
- объединение до 16 каналов G.703 для увеличения пропускной способности;
- пропускная способность до 31,5 Мбит/с;
- производительность до 55000 пакетов/с;
- компенсация задержки между линиями до 220 мс;
- возможность перераспределения суммарной пропускной способности между каналами E1 и Ethernet при аварии одного из линейных интерфейсов.

#### Диагностика:

- возможность включения локальных и удалённых шлейфов;
- аварийная светодиодная индикация.

#### Средства управления и мониторинга:

- командная строка (CLI);
- локальное управление через порт Console;
- удалённое управление по протоколу Telnet;
- протоколы SNMP v1 и v2c;
- микропереключатели.

## 4.3 Параметры портов

## 4.3.1 Порты Ethernet

- физический интерфейс: 10Base-T/100Base-TX;
- скорость обмена данными 10/100 Мбит/с. Автоматическое определение скорости передачи;
- режим обмена дуплексный или полудуплексный. Автоматическое определение режима обмена;
- автоматическое определение типа кабеля MDI/MDI-X;
- поддержка VLAN: в соответствии со стандартом IEEE 802.1Q;
- режимы работы порта: access, hybrid, tag, алгоритм работы портов приведён на Рис. 11;
- тип разъема: розетка RJ-45, назначение контактов разъёма порта Ethernet приведено в приложении 1.

## 4.3.2 Порт Console

Порт Console изделия выполняет функции устройства типа DTE и имеет цифровой интерфейс RS-232 / V.24.

- скорость асинхронного обмена 19200 бит/с;
- количество битов данных 8;
- контроль по четности отсутствует;
- количество стоп-битов 1;
- управление потоком данных отсутствует;
- тип разъема: розетка RJ-45, назначение контактов разъёма порта Console приведено в приложении 2.

## 4.3.3 Порт Е1

Порты E1 выполнены в соответствии со спецификацией ITU-T G.703 (ГОСТ 27767-88) и G.704:

- линейный интерфейс: G.703 2048 кбит/с, ГОСТ 27767-88;
- цикловая структура: G.704;
- стык: симметричный, 120 Ом (2 витые пары);
- линейное кодирование: HDB3;
- чувствительность приемника: –12 дБ;
- подавление фазового дрожания: в соответствии с рекомендациями G.823;
- тип разъема: розетка RJ-45;
- назначение контактов разъёма порта Е1 приведено в приложении 3.

## 4.4 Внешний вид

## 4.4.1 Передняя панель

Вид передней панели изделия ГМ-2-IMUX-4E1 приведен на Рис. 3.

|               |                                                           |         | <br>PORTA               |  |
|---------------|-----------------------------------------------------------|---------|-------------------------|--|
| <b>Te</b> lax | 795 AN LOA OFFLOF<br>30 30 30<br>30 40 50<br>60 40 501505 | L L L L | DT DT SEARCY CONTRACTOR |  |

#### Рис. 3. Передняя панель ГМ-2-IMUX-4E1

Вид передней панели изделия ГМ-2-IMUX-8 Е1 приведен на Рис. 4.

| 7.            |   | _         |            | 1 |   |   |   |   |   | status | _ |   |                                                 | E1 DATES   | Lanessee was | POWER |                                              |  |
|---------------|---|-----------|------------|---|---|---|---|---|---|--------|---|---|-------------------------------------------------|------------|--------------|-------|----------------------------------------------|--|
| <u>te</u> iax | 1 | 4 M M M M | LEA OFFLOF |   | 4 | 4 | 4 | 4 | 4 | 4      | 4 | ÷ | err<br>te te t | LICOL STOR |              |       | невероный мультичногор<br>ЗЕЛАКС ГМ-2 ч.лицх |  |

#### Рис. 4. Передняя панель ГМ-2-IMUX-8E1



Рис. 5. Передняя панель ГМ-2-IMUX-16E1

На передней панели изделия расположены:

- индикаторы состояния изделия;
- индикаторы состояния портов E1;
- микропереключатели выбора отображаемых ошибок в портах E1;
- микропереключатели для включения шлейфов в портах E1 удалённого изделия;
- кнопка выбора индикации состояния локального или удалённого изделия;
- кнопка маскирования индикации при отсутствии сигнала на входах портов E1;
- разъём порта Ethernet (MNT);
- разъём порта Console;
- кнопка выключения питания.

На передней панели расположены индикаторы состояния изделия. Назначение этих индикаторов приведено в Табл. 3.

| Табл. 3. Назначение индикаторов состояния издели | й |
|--------------------------------------------------|---|
|--------------------------------------------------|---|

| Индикатор | Наименование            | Характер свечения индикатора. Комментарий         |
|-----------|-------------------------|---------------------------------------------------|
|           | Состояние напряжения    | Зеленый — изделие включено                        |
|           | питания изделия         | Погашен — изделие выключено                       |
|           |                         | Красный — изделие работает с ошибками             |
| ALM       | Индикатор аварии        | Погашен — изделие работает без ошибок или изделие |
|           |                         | выключено                                         |
| CV        | Индикатор ошибок        | Жёлтый — ошибки кодирования в потоках G.703       |
| 5         | кодирования             | Погашен — ошибок кодирования в потоках G.703 нет  |
|           |                         | Красный — превышение дифференциальной задержки    |
|           | Индикатор превышения    | в потоках G.703. Максимальная дифференциальная    |
| LOA       |                         | задержка превышает 220 мс                         |
|           | допустимой задержки     | Погашен — максимальная дифференциальная           |
|           |                         | задержка в потоках G.703 не превышает 220 мс      |
|           |                         | Красный — порты E1 локального и удалённого        |
| GID       | Индикатор групповой     | мультиплексоров соединены неправильно             |
| GID       | ошибки соединения       | Погашен — порты Е1 локального и удалённого        |
|           |                         | мультиплексоров соединены правильно               |
|           | Индикатор ошибок потери | Красный — потеря цикловой синхронизации           |
| GFF LOF   | цикловой структуры      | Погашен — нет потери цикловой синхронизации       |
|           | Индикатор ошибок в      | Красный — ошибка в потоке Ethernet                |
| LIIIERK   | потоках Ethernet        | Погашен — нет ошибок в потоке Ethernet            |

На передней панели расположены также индикаторы состояния портов E1 изделия (E1 STATUS). Назначения этих индикаторов приведено в Табл. 4.

#### Табл. 4. Назначение индикаторов портов E1 изделия (E1 STATUS)

| Индикатор | Наименование        | Характер свечения индикатора. Комментарий        |
|-----------|---------------------|--------------------------------------------------|
|           |                     | Зеленый — нормальное состояние порта Е1          |
| 1 16      | Состояние портов Е1 | Красный — ошибка в порте Е1                      |
| 1 - 10    |                     | Погашен — включена кнопка маскирования индикации |
|           |                     | ошибки в порте                                   |

На передней панели расположены микропереключатели выбора отображаемых ошибок портов E1. Назначение микропереключателей выбора отображаемых ошибок портов E1 приведено в Табл. 5.

| Название | Назначение                                |     | Описание                              |
|----------|-------------------------------------------|-----|---------------------------------------|
| 1.05     | Контроль сигнала на входе                 | On  | Включить отображение ошибки LOS       |
| 203      | порта Е1                                  | Off | Выключить отображение ошибки LOS      |
| CV       | Контроль ошибок кодирования               | On  | Включить отображение ошибки CV        |
| CV.      | в принимаемом потоке G.703                | Off | Выключить отображение ошибки CV       |
|          | Контроль сигнала аварии в                 | On  | Включить отображение ошибки AIS       |
| AIS      | потоке G.703                              | Off | Выключить отображение ошибки AIS      |
|          | Контроль потери цикловой<br>синхронизации |     | Включить отображение ошибки LOF       |
| LOF      |                                           |     | Выключить отображение ошибки LOF      |
|          | Контроль превышения уровня                | On  | Включить отображение ошибки ERR_OVER  |
| 10E-6    | ошибок в потоке G.703                     |     | Выключить отображение ошибки          |
|          | порогового значения 10⁻⁰                  |     | ERR_OVER                              |
| CPCA     | Контроль ошибок CRC4 в                    | On  | Включить отображение ошибки CRC4      |
| 0104     | потоке G.703                              | Off | Выключить отображение ошибки CRC4     |
|          | Контроль ошибок при                       | On  | Включить отображение ошибки EX_LOOP   |
| LOOP     | использовании шлейфа потока               |     |                                       |
|          | G.703                                     |     |                                       |
| VCAT     | Контроль ошибок виртуального              | On  | Включить отображение ошибки VCAT_ERR  |
| VOAI     | объединения каналов (VCAT)                |     | Выключить отображение ошибки VCAT_ERR |

Табл. 5. Назначение микропереключателей выбора отображаемых ошибок портов Е1

На передней панели расположены микропереключатели для включения шлейфов в портах Е1 удалённого изделия. На Рис. 6 приведён пример работы удалённого шлейфа.



Рис. 6. Схема работы шлейфа в удалённом порту Е1

При установке шлейфов на удалённом устройстве, шлейфы устанавливается на всех портах кроме одного. Назначение микропереключателей для включения шлейфов на портах E1 удалённого изделия приведено в Табл. 6.

Табл. 6. Назначение микропереключателей для включения шлейфов в портах E1 удалённого изделия

| Номер порта E1<br>удалённого изделия, на<br>котором не<br>устанавливается шлейф | Положение<br>микропереключателя<br>LOOP | Положение<br>микропереключателей<br>E1 PORT |  |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|--|--|--|
| Шлейф на всех портах<br>выключен                                                | OFF ON                                  | Любое положение                             |  |  |  |
| 1                                                                               |                                         | OFF<br>ON                                   |  |  |  |
| 2                                                                               |                                         | OFF<br>ON                                   |  |  |  |
| 3                                                                               |                                         |                                             |  |  |  |
| 4                                                                               |                                         |                                             |  |  |  |
| 5                                                                               |                                         |                                             |  |  |  |
| 6                                                                               |                                         |                                             |  |  |  |
| 7                                                                               |                                         |                                             |  |  |  |
| 8                                                                               |                                         |                                             |  |  |  |
| 9                                                                               |                                         |                                             |  |  |  |
| 10                                                                              |                                         |                                             |  |  |  |
| 11                                                                              |                                         |                                             |  |  |  |
| 12                                                                              | OFF<br>ON                               | OFF<br>ON                                   |  |  |  |
| 13                                                                              | OFF<br>ON                               | OFF<br>ON                                   |  |  |  |
| 14                                                                              | OFF<br>ON                               | OFF<br>ON                                   |  |  |  |
| 15                                                                              |                                         | OFF<br>ON                                   |  |  |  |
| 16                                                                              |                                         | OFF<br>ON                                   |  |  |  |

## 4.4.2 Задняя панель

Вид задней панели изделия ГМ-2-IMUX-4E1 приведен на Рис. 7.



Рис. 7. Задняя панель ГМ-2-IMUX-4E1

Вид задней панели изделия ГМ-2-IMUX-8E1 приведен на Рис. 8.



Рис. 8. Задняя панель ГМ-2-IMUX-8E1

Вид задней панели изделия ГМ-2-IMUX-16E1 приведен на Рис. 9.



Рис. 9. Задняя панель ГМ-2-IMUX-16E1

На задней панели изделия расположены:

- разъёмы портов Ethernet;
- разъёмы портов Е1 (4, 8 или 16 в зависимости от модификации);
- индикаторы состояний портов Ethernet;
- разъём для подключения кабеля питания от сети переменного тока;
- разъём для подключения кабеля питания от сети постоянного тока;
- клемма заземления.

Над разъемами портов Ethernet расположены индикаторы их состояний. Назначение индикаторов приведено в.Табл. 4.

| Табл.      | 7. Ha:   | вначение | индика                                | торов   | портов | Ethernet | изделий |
|------------|----------|----------|---------------------------------------|---------|--------|----------|---------|
| 1 4 0 3 11 | 1.1.1.04 |          | · · · · · · · · · · · · · · · · · · · | IOPOD I | 100000 |          | подолни |

| Индикатор | Наименование                                                          | Характер свечения индикатора. Комментарий                                                                                            |
|-----------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| LNK/ACT   | Индикатор целостности<br>физического<br>соединения/Передача<br>данных | Зелёный светится постоянно — соединение установлено<br>Зелёный мигает — приём/передача данных<br>Погашен — соединение не установлено |
| SPD       | Скорость соединения                                                   | Жёлтый светится постоянно — скорость соединения<br>равна 100 Мбит/с<br>Погашен — скорость соединения равна 10 Мбит/с                 |

## 4.5 Конструктивное исполнение и электропитание

Варианты конструктивного исполнения и электропитания изделий приведены в Табл. 8.

| таол. о. конструктивное исполнение и электронитание изделии | Габл. | 8. | Конструктивное исполнение и | и электропитание изделий |
|-------------------------------------------------------------|-------|----|-----------------------------|--------------------------|
|-------------------------------------------------------------|-------|----|-----------------------------|--------------------------|

| Модификация       | Конструктивное исполнение                                   | Напряжение<br>электропитания | Мощность,<br>не более |
|-------------------|-------------------------------------------------------------|------------------------------|-----------------------|
| ГМ-2-IMUX-xE1-UPH | Металлический корпус высотой 1U<br>для монтажа в стойку 19" | ~220 B,<br>=36…72 B          | 8 Вт                  |

В изделиях ГМ-2-IMUX-хЕ1-UPH предусмотрено электропитание от двух альтернативных источников:

- от сети переменного тока напряжением ~220 В, 50 Гц;
- от сети постоянного тока напряжением 36...72 В.

К изделию можно подключать одновременно оба источника электропитания. Электропитание изделие будет получать от обоих источников одновременно. При пропадании напряжения в сети переменного или постоянного тока изделие остаётся работоспособным. Автоматическое переключение на резервный источник питания осуществляется плавно, без нарушения работоспособности изделия.

## 4.6 Габаритные размеры и масса

Габаритные размеры корпуса и масса изделий приведены в Табл. 9.

#### Табл. 9. Габаритные размеры и масса изделий

| Модификация       | Габаритные размеры | Масса         |
|-------------------|--------------------|---------------|
| FM-2-IMUX-xE1-UPH | 434 x 44 x 155 мм  | не более 2 кг |

## 4.7 Условия эксплуатации

Условия эксплуатации изделий:

- температура окружающей среды от 5 до +40°С;
- относительная влажность воздуха до 95% при температуре 30°С;
- режим работы круглосуточный.

## 5 Комплект поставки

В базовый комплект поставки изделия входят:

- изделие выбранного исполнения (см. п. 3);
- комплект для установки в 19" стойку (входит в состав изделия, см. Рис. 3 Рис. 5);
- переходник А-006 (см. приложение 4);
- консольный кабель (см. приложение 5);
- компакт-диск с документацией;
- упаковочная коробка.

## 6 Управление

Возможны три способа управления изделием:

- локальное, с использованием терминальной программы через порт Console;
- удалённое, с использованием протокола Telnet через порт Ethernet (MNT);
- удалённое, с использованием протокола SNMP через порт Ethernet (MNT).

## 6.1 Способы управления изделием

#### 6.1.1 Локальное управление через порт Console

Этот способ управления изделием осуществляется через порт Console, к которому подключается устройство типа DTE или DCE, выполняющее функцию терминала (далее для краткости это устройство именуется терминалом). Подключение терминала к порту Console изделия производится с помощью консольного кабеля и переходника А-006.

Порт терминала должен быть настроен следующим образом:

- асинхронная скорость передачи данных должна быть равна 19200 бит/с;
- число битов данных 8;
- контроль по четности или нечётности отсутствует;
- число стоп-битов 1;
- управление потоком данных отсутствует.

Вход в систему меню осуществляется нажатием на терминале клавиши Enter.

### 6.1.2 Удалённое управление по протоколу Telnet

Изделием можно управлять с удаленного компьютера через порт Ethernet (MNT) с использованием протокола Telnet.

Для управления изделием по протоколу Telnet могут использоваться программы Telnet или Hyper Terminal, входящие в стандартный набор программного обеспечения операционной системы Windows или аналогичные программы других систем.

## 6.1.3 Удалённое управление по протоколу SNMP

Изделием можно управлять с удаленного компьютера через порт Ethernet (MNT) с использованием протокола SNMP.

## 6.2 Интерфейс пользователя и режимы работы

#### 6.2.1 Синтаксис команд

Синтаксис команд, вводимых в командной строке:

команда {параметр | параметр} [параметр | параметр]

где:

команда — строго заданная последовательность символов, определяющая дальнейшие параметры;

параметр — ключевое слово, IP-адрес, маска сети, IP-адрес с маской, MAC-адрес, число, слово, строка.

Команда и параметры отделяются друг от друга пробелами.

При описании синтаксиса команд используются следующие обозначения:

- в фигурных скобках {} указываются обязательные параметры;
- в квадратных скобках [] указываются необязательные параметры;
- символ "|" обозначает логическое "или" выбор между различными параметрами;
- ключевые слова выделяются жирным шрифтом.

Типы параметров команд:

- ключевое слово слово, несущее определенную смысловую нагрузку, например, название протокола, имя интерфейса и т. д.;
- IP-адрес А.В.С.D задается в виде четырех десятичных чисел, разделенных точками;
- маска сети А.В.С.D задается в виде четырех десятичных чисел, разделенных точками;
- МАС-адрес А1.А2.А3.А4.А5.А6 задается в виде шести групп чисел, разделенных точками. Каждая группа состоит из двух шестнадцатеричных чисел.

Для исполнения набранной команды необходимо нажать клавишу "Enter".

Для получения контекстной справки используется символ "?" или команда "help".

#### 6.2.2 Контекстная справка

Для получения контекстной справки используется символ "?" или команда "help".

При вводе символа "?" или команды "help" выводится список доступных команд.

#### Пример:

Использование контекстной справки для получения списка доступных команд.

imux>help Command Description \_\_\_\_\_ -----System commands----------Show system parameters-----------Show system parameters?/helpView list of available commandsshowconfigView all systems configurationshowversionView firmware and hardware versionshowmacView MAC-addressshowipView IP-addressshowmaskView subnet maskshowgwView gatewayshowsnmpgetView SNMP read communityshowsnmpsetView SNMP write communityshowsnmpView SNMP agent enable or disableshowuserView information about Telnet management users -----El interfaces configuration----setgfpConfigure PTI, PFI, EXI of GFPsetvcgEnable/Disable VCAT and LCASsetvcmConfigure E1 as available for VCGsetclockConfigure clock sourcesetelloopEnable/Disable the loopback of E1 portsetdegcloseConfigure looped E1 links as not availablesetloopcloseConfigure looped E1 links as not available -----Displays status and configuration of the E1 interfaces-----showvcmView if El are configuration of the hi interfacesshowsqView SQ, GRP, CTRL of VCAT membersshowgfpView PTI, PFI, EXI of GFPshowvcgView configuration of VCGshowvcmalarmView alarms of VCAT membershowclockView clock source showclock View clock source

| showelloop      | View if E1 port is looped                   |
|-----------------|---------------------------------------------|
| showelalarm     | View alarms of El ports                     |
| showelperform   | View count of El CRC error                  |
| showlocale1map  | View local system's E1 map                  |
| showremotee1map | View remote system's E1 map                 |
| showdegclose    | View if degraded E1 links are not available |
| showloopclose   | View if looped E1 links are not available   |
|                 | Ethernet switch configuration               |
| vlanaware       | Enable 802.10 VLAN mode                     |
| vlanunaware     | Disable 802.1Q VLAN mode                    |
| enableport      | Enable/Disable Ethernet port                |
| setport         | Configure Ethernet port                     |
| addvlan         | Add new VLAN to VLAN table                  |
| delvlan         | Delete VLAN from VLAN table                 |
| setportmode     | Configure mode of Ethernet port             |
| setpvid         | Configure Ethernet port VLAN ID             |
| setporttable    | Configure member of Ethernet port VLAN      |
| Displays s      | status and configuration of Ethernet switch |
| showvlan        | View VLAN table                             |
| showport        | View Ethernet port configuration            |
| showethperform  | View Ethernet performance                   |
| showethstatus   | View Ethernet port status                   |
|                 |                                             |
| imux>           |                                             |

Для получения справки о некоторой команде следует набрать символ "?" и через "" (пробел) ввести нужную команду. На терминал будет выведена справочная информация о команде. Для получения справки о некоторой команде можно вместо символа "?" ввести команду "help".

#### Пример:

Использование контекстной справки для получения списка параметров команды setmac.

## 6.2.3 Сообщения об ошибках

В Табл. 10 приведены сообщения об ошибках, которые могут выводиться во время работы с командной строкой.

| Табл. 10. Сообщения об ошибках, выводимые | е при работе | с командной стро | экой |
|-------------------------------------------|--------------|------------------|------|
|-------------------------------------------|--------------|------------------|------|

| Сообщение об ошибке           | Описание ошибки                                                                 | Рекомендуемые<br>действия                                         |
|-------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Command need parameters!      | Команде необходимы<br>дополнительные параметры.                                 |                                                                   |
| Undefined command!            | Команда не была<br>идентифицирована. Введена<br>ошибочная команда или параметр. | справки "?" следует<br>проверить корректность<br>вволимой команды |
| Command don't need parameter! | Команде не нужны<br>дополнительные параметры.                                   | водиниой комалды.                                                 |

## 7 Настройка изделия

## 7.1 Системные команды

## 7.1.1 Включение/выключение поддержки SNMP-агента

setsnmp {enable | disable}

| Параметр | Описание                         |
|----------|----------------------------------|
| enable   | Включение поддержки SNMP-агента  |
| disable  | Выключение поддержки SNMP-агента |

Команда включает/выключает поддержку SNMP-агента.

Установка по умолчанию: поддержка SNMP-агента включена.

#### Пример:

Выключение поддержки SNMP-агента.

imux>setsnmp disable

```
Snmp agent: disable
```

## 7.1.2 Изменение имени SNMP community для чтения

setsnmpget {read-community}

| Параметр       | Описание                                                                 |
|----------------|--------------------------------------------------------------------------|
| read-community | Имя SNMP community для чтения. Длина параметра read-community от 0 до 31 |
|                | символа                                                                  |

Команда изменяет имя SNMP community для чтения.

Установка по умолчанию: public.

#### Пример:

Изменение имени SNMP community для чтения на имя Zelax.

```
imux>setsnmpget Zelax
SNMP read community: Zelax
```

См. также:

| Команда     | Описание                                             |
|-------------|------------------------------------------------------|
| showsnmpget | Вывод имени SNMP community для чтения (см. п. 7.2.8) |

## 7.1.3 Изменение имени SNMP community для записи

setsnmpset {write-community}

| Параметр        | Описание                                                                   |
|-----------------|----------------------------------------------------------------------------|
| write-community | Имя SNMP community для записи. Длина параметра write-community длиной от 0 |
|                 | до 31 символа                                                              |

Команда изменяет имя SNMP community для записи.

Установка по умолчанию: private.

Пример:

Изменение имени SNMP community для записи на имя Zelax.

```
imux>setsnmpset Zelax
SNMP write community: Zelax
```

| Команда     | Описание                                             |
|-------------|------------------------------------------------------|
| showsnmpset | Вывод имени SNMP community для записи (см. п. 7.2.9) |

## 7.1.4 Изменение IP-адреса устройства

setip {IP-address}

| Параметр   | Описание                                                                |
|------------|-------------------------------------------------------------------------|
| IP-address | IP-адрес устройства. IP-адрес задается в виде четырех десятичных чисел, |
|            | разделенных точками в формате А.В.С.D                                   |

Команда изменяет ІР-адрес устройства.

Установка по умолчанию: 192.168.0.24.

#### Пример:

Изменение IP-адреса устройства на 10.1.1.25.

| imux>setip | 10.1.1.25 |
|------------|-----------|
|            |           |

IP-address: 10.1.1.25

#### См. также:

| Команда | Описание                                  |
|---------|-------------------------------------------|
| showip  | Вывод IP-адреса устройства (см. п. 7.2.5) |

## 7.1.5 Изменение маски подсети

setmask {mask}

| Параметр | Описание                                                                     |
|----------|------------------------------------------------------------------------------|
| mask     | Маска подсети устройства. Маска подсети — задается в виде четырех десятичных |
|          | чисел, разделенных точками в формате А.В.С.D                                 |

Команда изменяет маску подсети.

#### Установка по умолчанию: 255.255.255.0.

#### Пример:

Изменение маски подсети устройства на 255.0.0.0.

```
imux>setmask 255.0.0.0
Subnet mask: 255.0.0.0
```

#### См. Также:

| Команда  | Описание                           |
|----------|------------------------------------|
| showmask | Вывод маски подсети (см. п. 7.2.6) |

### 7.1.6 Изменение IP-адреса шлюза по умолчанию

setgw {IP-address}

| Параметр   | Описание                                                                   |
|------------|----------------------------------------------------------------------------|
| IP-address | IP-адрес шлюза по умолчанию. IP-адрес — задается в виде четырех десятичных |
|            | чисел, разделенных точками в формате А.В.С.D                               |

Команда изменяет IP-адрес шлюза по умолчанию.

Установка по умолчанию: 192.168.0.1.

Изменение ІР-адреса шлюза по умолчанию на 192.168.0.100.

imux>setgw 192.168.0.100

```
Default gateway: 192.168.0.100
```

#### См. также:

| Команда | Описание                                          |
|---------|---------------------------------------------------|
| showgw  | Вывод IP-адреса шлюза по умолчанию (см. п. 7.2.7) |

## 7.1.7 Команда изменения МАС-адреса устройства

setmac {MAC-address}

| Параметр    | Описание                                                                  |
|-------------|---------------------------------------------------------------------------|
| MAC-address | МАС-адрес устройства. МАС-адрес задается в виде шести групп чисел,        |
|             | разделенных точками в формате А1.А2.А3.А4.А5.А6. Каждая группа состоит из |
|             | двух шестнадцатеричных чисел                                              |

Команда изменяет МАС-адрес устройства. Новый МАС-адрес устройство принимает после перезагрузки.

Установка по умолчанию: индивидуальный и уникальный МАС-адрес для каждого устройства.

#### Пример:

Изменение МАС-адреса устройства на 00.11.22.33.44.55.

```
imux>setmac 00.11.22.33.44.55
New MAC-address: 00.11.22.33.44.55
```

New MAC Address will be activated, after system reset.

См. также:

| Команда | Описание                                   |
|---------|--------------------------------------------|
| showmac | Вывод МАС-адреса устройства (см. п. 7.2.4) |

## 7.1.8 Загрузка нового программного обеспечения

download {IP-address} {login} {password} {filename}

| Параметр   | Описание                                                                 |
|------------|--------------------------------------------------------------------------|
| IP-address | IP-адрес FTP-сервера. IP-адрес задается в виде четырех десятичных чисел, |
|            | разделенных точками в формате A.B.C.D                                    |
| login      | Имя учётной записи на FTP-сервере                                        |
| password   | Пароль                                                                   |
| filename   | Имя файла с новой версией программного обеспечения                       |

Команда обновляет программное обеспечение устройства. Программное обеспечение обновится после перезагрузки устройства.

Внимание! Загрузка неверного файла с программным обеспечением приведёт к неработоспособности устройства! Перед обновлением ПО убедитесь, что загружаете правильный файл. В случае выхода мультиплексора из строя в результате загрузки не неверного файла с ПО ремонт осуществляется за счёт покупателя

Обновление программного обеспечения устройства.

## 7.1.9 Перезагрузка устройства

#### reset

Команда выполняет перезагрузку устройства.

#### Пример:

Выполнение перезагрузки устройства.

```
imux>reset
System will reset in a few minutes! Please Wait.....
```

## 7.1.10 Восстановление заводских установок

#### setdefault

Команда приводит все настройки устройства в соответствие с заводскими (первоначальными) установками кроме настроек IP и SNMP. Заводские установки вступают в действие после перезагрузки устройства.

#### Пример:

Восстановление заводских настроек.

```
imux>setdefault
```

```
Default setting was loaded successfully, please reset system.
```

## 7.1.11 Очистка статистики

#### clearperform {all | eth | E1 | GFP}

| Параметр | Описание                           |
|----------|------------------------------------|
| all      | Очистка всей статистики            |
| E1       | Очистка статистики портов Е1       |
| eth      | Очистка статистики портов Ethernet |
| GFP      | Очистка статистики GFP             |

Команда очищает всю статистику устройства, статистику портов E1, Ethernet и GFP.

#### Пример:

Очистка всей статистики.

imux>clearperform all

All performance was cleared.

См. также:

| Команда        | Описание                                                         |
|----------------|------------------------------------------------------------------|
| showethperform | Вывод статистических данных о количестве переданной информации и |
|                | количестве ошибок в портах Ethernet (см. п. 7.6.3)               |
| showe1perform  | Просмотр ошибок CRC в потоках G.703 (см. п. 7.4.9)               |
| showgfp        | Просмотр параметров и статистики протокола GFP (см. п. 7.4.3)    |

## 7.1.12 Добавление пользователя для доступа по протоколу Telnet

adduser {login} {password}

| Параметр | Описание                                                                    |
|----------|-----------------------------------------------------------------------------|
| login    | Имя нового пользователя. Значение login может принимать символьные значения |
|          | длиной от 1 до 31 символа                                                   |
| password | Пароль нового пользователя. Значение password может принимать символьные    |
|          | значения длиной от 1 до 31 символа                                          |

Команда создаёт нового пользователя для доступа к изделию по протоколу Telnet.

#### Установка по умолчанию:

login: admin; password: admin.

#### Пример:

Создание нового пользователя с именем user и паролем user.

```
imux >adduser user user
Telnet manage username:user
Telnet manage password:user
```

#### См. также:

| Команда  | Описание                                                                   |
|----------|----------------------------------------------------------------------------|
| deluser  | Удаление пользователя, имеющего доступ по протоколу Telnet (см. п. 7.1.13) |
| showuser | Вывод информации о пользователях имеющих доступ по протоколу               |
|          | Telnet (см. п. 7.2.11)                                                     |

## 7.1.13 Удаление пользователя, имеющего доступ по протоколу Telnet

**deluser** {login} {password}

| Параметр | Описание                       |  |
|----------|--------------------------------|--|
| login    | Имя удаляемого пользователя    |  |
| password | Пароль удаляемого пользователя |  |

Команда удаляет существующего пользователя имеющего доступ к изделию по протоколу Telnet.

#### Пример:

Удаление пользователя с именем admin и паролем admin.

imux>deluser admin admin

Telnet user was deleted successfully.

| Команда  | Описание                                                                |
|----------|-------------------------------------------------------------------------|
| adduser  | Добавление пользователя для доступа по протоколу Telnet (см. п. 7.1.12) |
| showuser | Вывод информации о пользователях имеющих доступ по протоколу            |
|          | Telnet (см. п. 7.2.11)                                                  |

## 7.1.14 Изменение имени устройства

setprompt {name}

| Параметр | Описание             |
|----------|----------------------|
| name     | Новое имя устройства |

Команда изменяет имя устройства.

#### Пример:

Изменение имени устройства на Zelax

imux>setprompt Zelax Zelax>

## 7.2 Просмотр системных параметров

## 7.2.1 Вывод справочной информации

help [command]

? [command]

| Параметр | Описание                                                      |
|----------|---------------------------------------------------------------|
| command  | Название команды, для которой требуется справочная информация |

Команда выводит справочную информацию о заданной команде, если команда не указана, то выводится список всех доступных команд.

#### Пример:

Вывод справочной информации для команды setip.

# 7.2.2 Вывод информации о текущей конфигурации устройства

## showconfig

Вывод полной информации о конфигурации устройства:

Пример:

Вывод текущей конфигурации

GFP PTI = 0 GFP PFI = 0GFP EXI = 0Send : VCAT: enable | LCAS:enable Receive: VCAT: enable | LCAS: enable E1SEND RECEIVE \_\_\_\_\_ 1 enable enable 2 enable enable enable 3 enable 4 enable enable 5 enable enable 6 enable enable 7 enable enable 8 enable enable 9 enable enable 10 enable enable 11 enable enable 12 enable enable 13 enable enable enable 14 enable 15 enable enable 16 enable enable Shutdown El links if error over 10E-6: enable Shutdown E1 links if loopback was detected: enable -----E1 LOOPBACK------1 no loop 2 no loop 3 no loop 4 no loop 5 no loop 6 no loop 7 no loop 8 no loop 9 no loop 10 no loop 11 no loop 12 no loop 13 no loop 14 no loop 15 no loop 16 no loop -----CLOCK SOURCE-----Clock source: internal -----ETHERNET-----ETHERNET-----ID AUTO SPEED DUPLEX FLOW MODE VLAN ID PORT MEMBERS VLAN PRIORITY \_\_\_\_\_ 

 1
 enable
 100
 full
 enable
 hybrid
 1
 1,2,3,4,5
 0

 2
 enable
 100
 full
 enable
 hybrid
 1
 1,2,3,4,5
 0

 3
 enable
 100
 full
 enable
 hybrid
 1
 1,2,3,4,5
 0

 4
 enable
 100
 full
 enable
 hybrid
 1
 1,2,3,4,5
 0

 5
 enable
 100
 full
 enable
 hybrid
 1
 1,2,3,4,5
 0

 -----VLAN MODE------\_\_\_\_\_ VLAN mode: disable ID VLAN ID VLAN MEMBER 1 1 1,2,3,4,5

## 7.2.3 Вывод системной информации

#### showversion

Команда выводит информацию о версии программной и аппаратной части устройства.

#### Пример:

Вывод информации о версии программной и аппаратной части устройства.

```
imux>showversion
System hardware version: 1.0.1
System software version: 2.4.1A1
System VLAN version: V100
```

#### Примечание:

| Параметр                | Описание                                       |
|-------------------------|------------------------------------------------|
| System Hardware Version | Версия аппаратной части                        |
| System Software Version | Версия программного обеспечения устройства     |
| System Vlan Version     | Версия программного обеспечения поддержки VLAN |

## 7.2.4 Вывод МАС-адреса устройства

#### showmac

Команда выводит МАС-адрес устройства.

#### Пример:

Вывод МАС-адреса устройства.

```
imux>showmac
```

```
MAC-address: 00.19.AB.16.13.8C
```

#### См. также:

| Команда | Описание                                       |  |
|---------|------------------------------------------------|--|
| setmac  | Изменение МАС-адреса устройства (см. п. 7.1.7) |  |

## 7.2.5 Вывод ІР-адреса устройства

#### showip

Команда выводит IP-адрес устройства.

#### Пример:

Вывод IP-адреса устройства.

```
imux>showip
IP-address: 192.168.0.155
```

| Команда | Описание                                      |
|---------|-----------------------------------------------|
| setip   | Изменение IP-адреса устройства (см. п. 7.1.4) |

## 7.2.6 Вывод маски подсети

#### showmask

Команда выводит маску подсети.

#### Пример:

Вывод маски подсети.

Subnet mask: 255.255.255.0

См. также:

imux>showmask

| Команда | Описание                               |
|---------|----------------------------------------|
| setmask | Изменение маски подсети (см. п. 7.1.5) |

## 7.2.7 Вывод IP-адреса шлюза по умолчанию

#### showgw

Команда выводит IP-адрес шлюза по умолчанию.

#### Пример:

Вывод IP-адреса шлюза по умолчанию.

imux>showgw

```
Subnet mask: 192.168.0.1
```

#### См. также:

| Команда | Описание                                              |
|---------|-------------------------------------------------------|
| setgw   | Изменение IP-адреса шлюза по умолчанию (см. п. 7.1.6) |

## 7.2.8 Вывод имени SNMP community для чтения

#### showsnmpget

Команда выводит имя SNMP community для чтения.

Пример:

Вывод имени SNMP community для чтения.

```
imux>showsnmpget
```

```
SNMP read community: public
```

См. также:

 Команда
 Описание

 setsnmpget
 Изменение имени SNMP community для чтения (см. п. 7.1.2)

## 7.2.9 Вывод имени SNMP community для записи

#### showsnmpset

Команда выводит имя SNMP community для записи.

#### Пример:

Вывод имени SNMP community для записи.

```
imux>showsnmpset
```

SNMP write community: private

См. также:

| Команда    | Описание                                                 |
|------------|----------------------------------------------------------|
| setsnmpset | Изменение имени SNMP community для записи (см. п. 7.1.3) |

## 7.2.10 Вывод информации о состоянии SNMP-агента

#### showsnmp

Команда отображает состояние SNMP-агента.

#### Пример:

Просмотр состояния SNMP-агента.

imux>showsnmp
SNMP AGENT: Enable

# 7.2.11 Вывод информации о пользователях, имеющих доступ по протоколу Telnet

#### showuser

Команда выводит всех пользователей, имеющих доступ к изделию по протоколу Telnet.

#### Пример:

Просмотр всех пользователей, имеющих доступ к изделию по протоколу Telnet.

| imux>showuser |          |
|---------------|----------|
| USERNAME      | PASSWORD |
| admin         | admin    |

#### См. также:

| Команда | Описание                                                                  |
|---------|---------------------------------------------------------------------------|
| adduser | Добавление пользователя для доступа по протоколу Telnet (см. п. 7.1.12)   |
| deluser | Удаление пользователя имеющего доступ по протоколу Telnet (см. п. 7.1.13) |

## 7.3 Команды настройки интерфейсов Е1

## 7.3.1 Настройка параметров протокола GFP

setgfp {PTI} {PFI} {EXI} {enable | disable} {enable | disable}

| Параметр | Описание                                                                          |
|----------|-----------------------------------------------------------------------------------|
| PTI      | Идентификатор типа данных в заголовке GFP. PTI=0 для пользовательских данных.     |
|          | В текущей версии ПО устройство поддерживает только кадры с пользовательскими      |
|          | данными                                                                           |
| PFI      | Идентификатор наличия поля FCS (Frame Check Sequence, последовательность          |
|          | контроля кадров) в заголовке GFP. PFI = 1, если поле FCS присутствует, и PFI = 0, |
|          | если FCS отсутствует                                                              |
| EXI      | Идентификатор расширенного заголовка. EXI = 0 для нулевого расширения и           |
|          | EXI = 1 для кадра с топологией типа "цепочка". В текущей версии ПО устройство     |
|          | поддерживает только нулевое расширение заголовка                                  |
| enable   | Скремблирование всех полей заголовка GFP, за исключением полей PLI и сНЕС         |
| disable  | Скремблирование только полей PLI и сНЕС заголовка GFP                             |
| enable   | Включает скремблирование только полей PLI и сНЕС                                  |
| disable  | Выключает скремблирование полей PLI и сНЕС                                        |

Команда настраивает протокол GFP. На локальном и удалённом устройстве настройки протокола GFP должны совпадать.

#### Примечание:

| Параметр                           | Описание                                          |
|------------------------------------|---------------------------------------------------|
| PTI (Payload Type Identifier)      | Идентификатор типа данных в заголовке GFP         |
| PFI (Payload FCS field Identifier) | Идентификатор наличия поля FCS в заголовке GFP    |
| FCS (Frame Check Sequence)         | Необязательное поле контроля ошибок данных        |
| EXI (Extension Head Identifier)    | Идентификатор расширенного заголовка              |
| PLI (Payload Length Indicator)     | Индикатор длины поля данных                       |
| cHEC (core Header Error Control)   | Поле для определения и коррекции ошибок заголовка |

#### Установка по умолчанию:

PTI=0; PFI=0; EXI=0; Включено скремблирование полей PLI и сНЕС.

#### Пример:

Настройка PTI=0, PFI=0, EXI=0, исключение из скремблирования полей PLI и сНЕС.

```
imux>setgfp 0 0 0 disable disable
PSCRD: disable
HSCRD: disable
PTI = 0
PFI = 0
EXI = 0
```

#### См. также:

| Команда | Описание                                                      |
|---------|---------------------------------------------------------------|
| showgfp | Просмотр параметров и статистики протокола GFP (см. п. 7.4.3) |

### 7.3.2 Включение/выключение виртуального объединения каналов и схемы динамической подстройки пропускной способности

setvcg {disable | enable} {disable | enable}

| Параметр | Описание                                                                   |
|----------|----------------------------------------------------------------------------|
| disable  | Виртуальное объединение каналов выключено. При выключении виртуального     |
|          | объединения каналов данные Ethernet передаются по одному потоку G.703      |
| enable   | Виртуальное объединение каналов включено. При включении виртуального       |
|          | объединения каналов данные Ethernet передаются по нескольким потокам G.703 |
|          | (до 16)                                                                    |
| disable  | Схема динамической подстройки ёмкости линии выключена                      |
| enable   | Схема динамической подстройки ёмкости линии включена                       |

Установка по умолчанию: Виртуальное объединение каналов и схема подстройки емкости линии включены.

Команда включает/выключает виртуальное объединение каналов и схему подстройки емкости линии. Виртуальное объединение каналов позволяет передавать данные Ethernet по нескольким потокам G.703 (до 16). Схема подстройки емкости линии используется для динамического перераспределения и управления полосой пропускания.

#### Примечание:

| Параметр                               | Описание                                       |
|----------------------------------------|------------------------------------------------|
| VCAT (Virtual Concatenation)           | Виртуальное объединение каналов                |
| LCAS (Link Capacity Adjustment Scheme) | Схема подстройки пропускной способности канала |

Выключение виртуального объединения каналов и схемы динамической подстройки емкости линии.

imux>setvcg 0 0
Send : VCAT Enable = 0 ---- LCAS Enable = 0
Receive : VCAT Ebanle = 0 ---- LCAS Enable = 0
Description: 1 : Enable , 0 : Disable

См. также:

| Команда | Описание                                                                 |
|---------|--------------------------------------------------------------------------|
| showvcg | Просмотр состояния виртуального объединения каналов и схемы динамической |
|         | подстройки емкости линии (см. п. 7.4.4)                                  |

# 7.3.3 Настройка принадлежности портов E1 к группе виртуального объединения каналов

#### setvcm {port} {disable | enable} {disable | enable}

| Параметр | Описание                                                            |
|----------|---------------------------------------------------------------------|
| port     | Номер порта Е1, который необходимо включить или исключить из группы |
|          | виртуального объединения каналов                                    |
| disable  | Исключить заданный канал Е1 из группы для передачи данных           |
| enable   | Включить заданный канал Е1 в группу для передачи данных             |
| disable  | Исключить заданный канал Е1 из группы для приёма данных             |
| enable   | Включить заданный канал Е1 в группу для приёма данных               |

Команда исключает или добавляет порт к группе виртуального объединения каналов отдельно для приёма и передачи данных Ethernet.

Установка по умолчанию: Все поры Е1 включены в группу виртуального объединения каналов.

Пример:

Исключение из группы виртуального объединения каналов 10-го порта Е1 для приёма и передачи данных.

```
imux>setvcm 10 disable disable
Send : VCAT 10 : disable
Receive: VCAT 10 : disable
```

#### См. также:

| Команда | Описание                                                                    |
|---------|-----------------------------------------------------------------------------|
| showvcm | Просмотр принадлежности портов Е1 к группе виртуального объединения каналов |
|         | (см. п. 7.4.1)                                                              |

#### 7.3.4 Настройка режима синхронизации устройства

setclock {internal | line port}

| Параметр | Описание                                                                     |
|----------|------------------------------------------------------------------------------|
| internal | Синхронизация устройства осуществляется от внутреннего генератора            |
| line     | Синхронизация устройства осуществляется от сигнала на выходе приемника порта |
| port     | Номер порта Е1, от сигнала на выходе приемника которого будет осуществляться |
|          | синхронизация устройства                                                     |

Команда настраивает режим синхронизации устройства. Если синхронизация устройства осуществляется от сигнала на выходе приёмника и в этом порте нет входного сигнала, то синхронизация устройства осуществляется от порта следующего по счёту, на котором есть сигнал на выходе приёмника.

Установка по умолчанию: Синхронизация устройства осуществляется от внутреннего генератора.

Установка синхронизации устройства от сигнала на входе 10-го порта Е1.

```
imux>setclock line 10
Clock source: line
Clock source from E1: 10
```

#### См. также:

| Команда   | Описание                                                |
|-----------|---------------------------------------------------------|
| showclock | Просмотр режима синхронизации устройства (см. п. 7.4.6) |

## 7.3.5 Установка шлейфов ва портах Е1 устройства

#### sete1loop {port} {enable | disable}

Команда устанавливает шлейф в порте E1 устройства. На Рис. 10 приведен пример установки шлейфа в порте E1.

| Параметр | Описание                                              |
|----------|-------------------------------------------------------|
| port     | Номер порта Е1, в котором необходимо установить шлейф |
| enable   | Установка шлейфа в заданном порте                     |
| disable  | Снятие шлейфа с заданного порта                       |



#### Рис. 10. Установка шлейфа в порте Е1

#### Пример:

Установка шлейфа в 10-м порте Е1.

```
imux>setelloop 10 enable
E1-10 loop: enable
```

#### См. также:

| Команда    | Описание                                                             |
|------------|----------------------------------------------------------------------|
| showe1loop | Вывод информации о шлейфах установленных в устройстве (см. п. 7.4.7) |

# 7.3.6 Автоматическое отключение портов E1 при превышении допустимого уровня ошибок в потоке G.703

#### setdegclose {enable | disable}

| Параметр | Описание                                                                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| enable   | Включение функции автоматического отключения портов Е1 для передачи данных                                                                                                 |
|          | Ethernet при превышении уровнем ошибок в потоке G.703 значения, равного 10 <sup>-6</sup>                                                                                   |
| disable  | Выключение функции автоматического отключения портов E1 для передачи<br>данных Ethernet при превышении уровнем ошибок в потоке G.703 значения,<br>равного 10 <sup>-6</sup> |

Команда включает/выключает функцию автоматического отключения портов E1 при превышении уровнем ошибок в потоке G.703 значения, равного 10<sup>-6</sup>. При перезагрузке устройства команда принимает заводское значение.

Установка по умолчанию: функция включена.

Выключение функции автоматического отключения портов Е1 при превышении допустимого уровня ошибок.

imux>setdegclose disable

Shutdown El links if error over 10E-6: disable

См. также:

| Команда      | Описание                                                               |
|--------------|------------------------------------------------------------------------|
| showdegclose | Просмотр состояния автоматического отключения портов Е1 при превышении |
| _            | допустимого уровня ошибок (см. п. 7.4.12)                              |

## 7.3.7 Автоматическое отключение портов E1 при обнаружении шлейфов в портах E1

#### setloopclose {enable | disable}

| Параметр | Описание                                                                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------|
| enable   | Включение функции автоматического отключения портов Е1 для передачи данных                                                  |
|          | Ethernet при обнаружении шлейфов в портах E1                                                                                |
| disable  | Выключение функции автоматического отключения портов E1 для передачи<br>данных Ethernet при обнаружении шлейфов в портах E1 |

Команда включает/выключает функцию автоматического отключения портов E1 при обнаружении шлейфов в портах E1. При перезагрузке устройства команда принимает заводское значение.

#### Установка по умолчанию: функция включена.

#### Пример:

Выключение функции автоматического отключения портов Е1 при обнаружении шлейфов в портах Е1

imux>setloopclose disable

Shutdown El links if loopback was detected: disable

#### См. также:

| Команда       | Описание                                                                |
|---------------|-------------------------------------------------------------------------|
| showloopclose | Просмотр состояния автоматического отключения портов Е1 при обнаружении |
| -             | шлейфов в портах Е1 (см. п. 7.4.13)                                     |

## 7.4 Команды мониторинга интерфейса Е1

# 7.4.1 Просмотр принадлежности портов E1 к группе виртуального объединения каналов

#### showvcm

Команда выводит информацию о принадлежности портов Е1 к группе виртуального объединения каналов.

Вывод информации о принадлежности портов Е1 к группе виртуального объединения каналов.

| imux>showvcm  |         |         |
|---------------|---------|---------|
| E1            | SEND    | RECEIVE |
| ============= |         |         |
| 1             | disable | disable |
| 2             | disable | disable |
| 3             | disable | disable |
| 4             | disable | disable |
| 5             | disable | disable |
| 6             | disable | disable |
| 7             | disable | disable |
| 8             | disable | disable |
| 9             | disable | disable |
| 10            | disable | disable |
| 11            | disable | disable |
| 12            | disable | disable |
| 13            | disable | disable |
| 14            | disable | disable |
| 15            | disable | disable |
| 16            | disable | disable |

#### См. также:

| Команда | Описание                                                             |
|---------|----------------------------------------------------------------------|
| setvcm  | Настройка принадлежности портов Е1 к группе виртуального объединения |
|         | каналов (см. п. 7.3.3)                                               |

## 7.4.2 Просмотр настроек виртуального объединения каналов

## showsq

Команда выводит информацию о настойках виртуального объединения каналов.

#### Пример:

Вывод информации о настройках виртуального объединения каналов.

| imux>sh | owsq  |         |            |           |        |      |          |          |       |
|---------|-------|---------|------------|-----------|--------|------|----------|----------|-------|
| TriId   | ТΧ    | GROUP   | TX-QUEUE   | TX-CTRL   |        | RX   | RX-QUEUE | RX-CTR   | RL    |
| ======  | ====  |         |            |           |        |      |          |          |       |
| 1       | on    | on      | 0          | normal    |        | on   | 8        | normal   |       |
| 2       | on    | on      | 1          | normal    |        | on   | 9        | normal   |       |
| 3       | on    | on      | 2          | normal    |        | on   | 10       | normal   |       |
| 4       | on    | on      | 3          | normal    |        | on   | 11       | normal   |       |
| 5       | on    | on      | 4          | normal    |        | on   | 12       | normal   |       |
| 6       | on    | on      | 5          | normal    |        | on   | 13       | normal   |       |
| 7       | on    | on      | 6          | normal    |        | on   | 14       | normal   |       |
| 8       | on    | on      | 7          | normal    |        | on   | 15       | normal   | (EoQ) |
| 9       | on    | on      | 8          | normal    |        | on   | 0        | normal   |       |
| 10      | on    | on      | 9          | normal    |        | on   | 1        | normal   |       |
| 11      | on    | on      | 10         | normal    |        | on   | 2        | normal   |       |
| 12      | on    | on      | 11         | normal    |        | on   | 3        | normal   |       |
| 13      | on    | on      | 12         | normal    |        | on   | 4        | normal   |       |
| 14      | on    | on      | 13         | normal    |        | on   | 5        | normal   |       |
| 15      | on    | on      | 14         | normal    |        | on   | 6        | normal   |       |
| 16      | on    | on      | 15         | normal    | (EoQ)  | on   | 7        | normal   |       |
| CTRL:   |       |         |            |           |        |      |          |          |       |
| 0-LCAS  | off , | ; 1-ado | d ; 2-norr | nal ; 3-1 | normal | (EoÇ | ), End c | of Queue |       |
| 5-delet | e     | ; 15-no | ot use     |           |        |      |          |          |       |

#### Примечание:

| Параметр   | Описание                                                                   |
|------------|----------------------------------------------------------------------------|
| Trild      | Номер порта Е1                                                             |
| TX-INGRP   | Принадлежность порта Е1 группе виртуального объединения каналов на         |
|            | передачу. TX-INGRP=0 — порт не включён в группу виртуального объединения   |
|            | каналов для передачи. TX-INGRP=1 — порт включён в группу виртуального      |
|            | объединения каналов для передачи                                           |
| TX-ADD-END | Принадлежность порта Е1 группе виртуального объединения каналов.           |
|            | TX-ADD-END=0 — порт принадлежит группе виртуального объединения каналов    |
|            | на приём и на передачу                                                     |
| TX-SQ      | Индикатор очереди на передачу. Последовательность портов для передачи      |
|            | данных в группе виртуального объединёния каналов                           |
| TX-CTRL    | Передача поля управления служебной информацией на передачу. CTRL=0 —       |
|            | схема подстройки емкости линии отключена. CTRL=1 — порт E1 находится в     |
|            | состоянии добавления к группе виртуального объединения каналов. CTRL=2 —   |
|            | нормальное функционирование. CTRL=3 — порт находится в конце               |
|            | последовательности в очереди, нормальное функционирование. CTRL=5 — порт   |
|            | находится в состоянии удаления из группы виртуального объединения каналов. |
|            | СIRL=15 — порт E1 не используется                                          |
| RX-INGRP   | Принадлежность порта Е1 группе виртуального объединения на приём.          |
|            | RX-INGRP=0 — порт не включён в группу виртуального объединения каналов для |
|            | приёма. RX-INGRP=1 — порт включён в группу виртуального объединения        |
|            | каналов для приёма                                                         |
| RX-SQ      | Индикатор очереди на приём. Последовательность портов для приёма данных в  |
|            | группе виртуального объединёния каналов                                    |
| RX-CTRL    | Приём поля управления служебной информацией                                |

## 7.4.3 Просмотр параметров и статистики протокола GFP

#### showgfp

Команда выводит параметры настойки протокола GFP и статистику работы протокола GFP.

#### Пример:

Вывод информации о настройках протокола GFP и статистики работы протокола GFP.

```
imux>showgfp
PSCRD: enable
HSCRD: enable
GFP PTI = 0
GFP PFI = 0
GFP EXI = 0
GFP sync = normal
GFP receive frame counter = 0 , 0
GFP receive error frame counter = 0 , 0
```

#### См. также:

| Команда      | Описание                                          |
|--------------|---------------------------------------------------|
| setgfp       | Настройка параметров протокола GFP (см. п. 7.3.1) |
| clearperform | Очистка статистики (см. п. 7.1.11)                |

# 7.4.4 Просмотр состояния виртуального объединения каналов и схемы динамической подстройки емкости линии

#### showvcg

Команда отображает состояние виртуального объединения каналов и протокола динамической подстройки емкости линии.

Вывод информации о настройках виртуального объединения каналов и протокола динамической подстройки емкости линии.

```
imux>showvcg
------VCG & LCAS ENABLE------
Send : VCAT: enable | LCAS:enable
Receive: VCAT: enable | LCAS: enable
-------MAX DELAY-------
Max delay = 224 ms
------ RECEIVE VCG ALARM-------
Loa: normal | gidm: normal
imux>
```

#### См. также:

| Команда | Описание                                                                                                                  |
|---------|---------------------------------------------------------------------------------------------------------------------------|
| setvcg  | Включение/выключение виртуального объединение каналов и протокола<br>динамической подстройки емкости линии (см. п. 7.3.2) |

## 7.4.5 Просмотр аварий виртуального объединения каналов

#### showvcmalarm

Вывод информации об авариях виртуального объединения каналов.

#### Пример:

Вывод информации об авариях виртуального объединения каналов.

| imux>showvcmalarm |        |           |          |          |          |  |
|-------------------|--------|-----------|----------|----------|----------|--|
| E1                | IN USE | CRC ERROR | FAIL     | LOMF1    | LOMF2    |  |
| 1                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 2                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 4                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 5                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 6                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 7                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 8                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 9                 | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 10                | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 11                | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 12                | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 13                | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 14                | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 15                | no     | no alarm  | no alarm | no alarm | no alarm |  |
| 16                | no     | no alarm  | no alarm | no alarm | no alarm |  |

#### Примечание:

| Параметр      | Описание                                                   |
|---------------|------------------------------------------------------------|
| VCMID         | Номер порта Е1                                             |
| DNU           | Использование порта Е1                                     |
| LCAS-CRCERROR | CRC ошибка протокола динамической подстройки емкости линии |
| LCAS-FAIL     | Ошибка протокола динамической подстройки емкости линии     |
| LCAS-LOMF2    | Ошибка потери сверхцикловой синхронизации в чётном кадре   |
| LCAS-LOMF1    | Ошибка потери сверхцикловой синхронизации в нечётном кадре |

## 7.4.6 Просмотр режима синхронизации устройства

#### showclock

Команда выводит информацию о режиме синхронизации устройства.

#### Пример:

Вывод информации о режиме синхронизации устройства.

| imux>showclock         |  |
|------------------------|--|
| Clock source: internal |  |
|                        |  |

#### См. также:

|                                                                   | Команда  |
|-------------------------------------------------------------------|----------|
| setclock Настройка режима синхронизации устройства (см. п. 7.3.4) | setclock |

# 7.4.7 Вывод информации о шлейфах, установленных в портах E1 устройства

#### showe1loop

Команда отображает информацию о шлейфах, установленных в портах E1 устройства.

#### Пример:

Просмотр шлейфов, установленных в портах Е1 устройства.

| imux>showelloop |         |  |  |  |
|-----------------|---------|--|--|--|
| E1              | STATUS  |  |  |  |
| 1               | no loop |  |  |  |
| 2               | no loop |  |  |  |
| 3               | no loop |  |  |  |
| 4               | no loop |  |  |  |
| 5               | no loop |  |  |  |
| 6               | no loop |  |  |  |
| 7               | no loop |  |  |  |
| 8               | no loop |  |  |  |
| 9               | no loop |  |  |  |
| 10              | no loop |  |  |  |
| 11              | no loop |  |  |  |
| 12              | no loop |  |  |  |
| 13              | no loop |  |  |  |
| 14              | no loop |  |  |  |
| 15              | no loop |  |  |  |
| 16              | no loop |  |  |  |

#### См. также:

| Команда   | Описание                                               |  |
|-----------|--------------------------------------------------------|--|
| sete1loop | Установка шлейфа в портах Е1 устройства (см. п. 7.3.5) |  |

## 7.4.8 Вывод информации об авариях в портах Е1

#### showe1alarm

Команда выводит информацию об авариях в портах E1.

Вывод информации об авариях в портах Е1.

| imux>showelalarm |          |          |          |          |          |          |
|------------------|----------|----------|----------|----------|----------|----------|
| E1               | LOS      | AIS      | LOF      | LOMF     | CV       | 10E-6    |
| 1                | no alarm |
| 2                | no alarm |
| 3                | no alarm |
| 4                | no alarm |
| 5                | no alarm |
| 6                | no alarm |
| 7                | no alarm |
| 8                | no alarm |
| 9                | no alarm |
| 10               | no alarm |
| 11               | no alarm |
| 12               | no alarm |
| 13               | no alarm |
| 14               | no alarm |
| 15               | no alarm |
| 16               | no alarm |

#### Примечание:

| Параметр                      | Описание                                                 |
|-------------------------------|----------------------------------------------------------|
| E1_ID                         | Номер порта Е1                                           |
| LOS (Loss of Signal)          | Потеря сигнала                                           |
| AIS (Alarm Indication Signal) | Сигнал тревожной индикации                               |
| LOF (Loss of Framing)         | Потеря цикловой синхронизации                            |
| LOMF (Loss of Multiframing)   | Потеря сверхцикловой синхронизации                       |
| CV (Code Violation)           | Ошибка кодирования                                       |
| 1E6                           | Уровень ошибок в потоке G.703 превышает 10 <sup>-6</sup> |

## 7.4.9 Просмотр ошибок CRC в потоках E1

#### showe1perform

Команда выводит ошибки CRC в потоках E1.

#### Пример:

Вывод информации об ошибках CRC в потоках E1.

| imux>showelperform |              |              |  |  |  |
|--------------------|--------------|--------------|--|--|--|
| E1                 | CRC ERROR(H) | CRC-ERROR(L) |  |  |  |
| 1                  | 0            | 0            |  |  |  |
| 2                  | 0            | 0            |  |  |  |
| 3                  | 0            | 0            |  |  |  |
| 4                  | 0            | 0            |  |  |  |
| 5                  | 0            | 0            |  |  |  |
| 6                  | 0            | 0            |  |  |  |
| 7                  | 0            | 0            |  |  |  |
| 8                  | 0            | 0            |  |  |  |
| 9                  | 0            | 0            |  |  |  |
| 10                 | 0            | 0            |  |  |  |
| 11                 | 0            | 0            |  |  |  |
| 12                 | 0            | 0            |  |  |  |
| 13                 | 0            | 0            |  |  |  |
| 14                 | 0            | 0            |  |  |  |
| 15                 | 0            | 0            |  |  |  |
| 16                 | 0            | 0            |  |  |  |

См. также:

| Команда      | Описание                           |
|--------------|------------------------------------|
| clearperform | Очистка статистики (см. п. 7.1.11) |

#### Примечание:

| Параметр     | Описание                   |
|--------------|----------------------------|
| CRC-ERROR(H) | Ошибки CRC старших 32 байт |
| CRC-ERROR(L) | Ошибки CRC младших 32 байт |

## 7.4.10 Вывод информации о карте подключения портов E1 локального устройства

#### showlocale1map

Команда выводит информацию о состоянии портов Е1 локального устройства и номера портов Е1 удалённого устройства, которые подключены к портам Е1 локального устройства.

#### Пример:

Вывод карты подключения портов E1 локального устройства. Первый порт E1 удалённого устройства соединён с пятым портом локального устройства, а пятый порт E1 удалённого устройства соединён с первым портом локального устройства. Все остальные порты E1 удалённого устройства подключены к портам E1 локального устройства с такими же номерами.

| 1mux>showlocale1map |          |           |  |  |  |  |
|---------------------|----------|-----------|--|--|--|--|
| LOCAL E1            | STATUS   | REMOTE E1 |  |  |  |  |
| 1                   | no alarm | .5        |  |  |  |  |
| 2                   | no alarm | 2         |  |  |  |  |
| 3                   | no alarm | 3         |  |  |  |  |
| 4                   | no alarm | 4         |  |  |  |  |
| 5                   | no alarm | 1         |  |  |  |  |
| 6                   | no alarm | 6         |  |  |  |  |
| 7                   | no alarm | 7         |  |  |  |  |
| 8                   | no alarm | 8         |  |  |  |  |
| 9                   | no alarm | 9         |  |  |  |  |
| 10                  | no alarm | 10        |  |  |  |  |
| 11                  | no alarm | 11        |  |  |  |  |
| 12                  | no alarm | 12        |  |  |  |  |
| 13                  | no alarm | 13        |  |  |  |  |
| 14                  | no alarm | 14        |  |  |  |  |
| 15                  | no alarm | 15        |  |  |  |  |
| 16                  | no alarm | 16        |  |  |  |  |

## 7.4.11 Вывод информации о карте подключения портов E1 удалённого устройства

#### showremotee1map

Команда выводит информацию о состоянии портов Е1 удалённого устройства и номера портов Е1 локального устройства которые подключены к портам Е1 удалённого устройству.

Вывод карты подключения портов E1 удалённого устройства. Первый порт E1 локального устройства соединён с пятым портом удалённого устройства, а пятый порт E1 локального устройства соединён с первым портом удалённого устройства. Все остальные порты E1 локального устройства подключены к портам E1 удалённого устройства с такими же номерами.

| imux>showremotee1map |          |          |  |  |
|----------------------|----------|----------|--|--|
| REMOTE E1            | STATUS   | LOCAL E1 |  |  |
|                      |          |          |  |  |
| 1                    | no alarm | 5        |  |  |
| 2                    | no alarm | 2        |  |  |
| 3                    | no alarm | 3        |  |  |
| 4                    | no alarm | 4        |  |  |
| 5                    | no alarm | 1        |  |  |
| 6                    | no alarm | 6        |  |  |
| 7                    | no alarm | 7        |  |  |
| 8                    | no alarm | 8        |  |  |
| 9                    | no alarm | 9        |  |  |
| 10                   | no alarm | 10       |  |  |
| 11                   | no alarm | 11       |  |  |
| 12                   | no alarm | 12       |  |  |
| 13                   | no alarm | 13       |  |  |
| 14                   | no alarm | 14       |  |  |
| 15                   | no alarm | 15       |  |  |
| 16                   | no alarm | 16       |  |  |

# 7.4.12 Просмотр состояния автоматического отключения портов E1 при превышении допустимого уровня ошибок

#### showdegclose

Команда отображает состояние функции автоматического отключения портов E1 при превышении допустимого уровня ошибок в потоке G.703.

#### Пример:

Вывод состояния функции автоматического отключения портов Е1 при превышении допустимого уровня ошибок в потоке G.703.

imux>showdegclose

```
Shutdown El links if error over 10E-6: enable
```

См. также:

| Команда     | Описание                                                                                                      |
|-------------|---------------------------------------------------------------------------------------------------------------|
| setdegclose | Автоматическое отключение портов E1 при превышении допустимого уровня<br>ошибок в потоке G.703 (см. п. 7.3.6) |

# 7.4.13 Просмотр состояния автоматического отключения портов E1 при обнаружении шлейфов в портах E1

#### showloopclose

Команда отображает состояние функции автоматического отключения портов E1 при обнаружении шлейфов в портах E1.

#### Пример:

Вывод состояния функции автоматического отключения портов E1 при обнаружении шлейфов в портах E1.

```
imux>showloopclose
```

Shutdown E1 links if loopback was detected: enable

См. также:

| Команда      | Описание                                                                |
|--------------|-------------------------------------------------------------------------|
| setloopclose | Автоматическое отключение портов Е1 при обнаружении шлейфов в портах Е1 |
|              | (см. п. 7.3.7)                                                          |

## 7.5 Настройка коммутатора Ethernet

## 7.5.1 Включение поддержки VLAN

#### vlanaware

Команда включает поддержку VLAN. После включения поддержки VLAN устройство передаёт только тегированные Ethernet-кадры, VLAN ID которых занесён в таблицу VLAN.

Установка по умолчанию: поддержка VLAN выключена.

#### Пример:

Включение поддержки VLAN.

| imux>vlanaware    |  |
|-------------------|--|
| VLAN mode: enable |  |

#### См. также:

| Команда     | Описание                                                             |
|-------------|----------------------------------------------------------------------|
| vlanunaware | Выключение функции поддержки VLAN (см. п. 7.5.2)                     |
| addvlan     | Добавление нового VLAN в таблицу (см. п. 7.5.5)                      |
| delvlan     | Удаление VLAN из таблицы (см. п. 7.5.6)                              |
| setpvid     | Назначение метки VLAN и приоритетов на порту Ethernet (см. п. 7.5.8) |
| showvlan    | Вывод таблицы VLAN и состояния поддержки VLAN (см. п. 7.6.1)         |

## 7.5.2 Выключение функции поддержки VLAN

#### vlanunaware

Команда выключает поддержку VLAN. Устройство пропускает все кадры Ethernet (нетегированные и тегированные).

Установка по умолчанию: поддержка VLAN выключена.

#### Пример:

Выключение функции поддержки VLAN.

| imux>vlanun | naware  |  |
|-------------|---------|--|
| VLAN mode:  | disable |  |

| Команда   | Описание                                                             |
|-----------|----------------------------------------------------------------------|
| vlanaware | Включение функции поддержки VLAN (см. п. 7.5.1)                      |
| addvlan   | Добавление нового VLAN в таблицу (см. п. 7.5.5)                      |
| delvlan   | Удаление VLAN из таблицы (см. п. 7.5.6)                              |
| setpvid   | Назначение метки VLAN и приоритетов на порту Ethernet (см. п. 7.5.8) |
| showvlan  | Вывод таблицы VLAN и состояния поддержки VLAN (см. п. 7.6.1)         |

## 7.5.3 Включение/выключение портов Ethernet

#### enableport {port} {enable | disable}

| Параметр | Описание                  |
|----------|---------------------------|
| port     | Номер порта Ethernet      |
| enable   | Выключение порта Ethernet |
| disable  | Включение порта Ethernet  |

#### Установка по умолчанию: все порты включены.

Команда включает/выключает порты Ethernet.

#### Пример:

Выключение порта Ethernet 1.

imux>enableport 1 disable

Ethernet port 1: disable

## 7.5.4 Настройка портов Ethernet

setport {port} {enable | disable} {10 | 100} {half | full} {enable | disable}

| Параметр | Описание                                         |
|----------|--------------------------------------------------|
| port     | Номер порта Ethernet                             |
| disable  | Автоматическое согласование параметров выключено |
| enable   | Автоматическое согласование параметров включено  |
| 10       | Скорость работы порта — 10 Мбит/с                |
| 100      | Скорость работы порта — 100 Мбит/с               |
| half     | Режим работы порта — Half Duplex                 |
| full     | Режим работы порта — Full Duplex                 |
| disable  | Управление обменом данных выключено              |
| enable   | Управление обменом данных включено               |

Команда настраивает автоматическое согласование параметров, скорость работы, дуплекс и управление обменом данных. При включенном режиме автоматического согласования параметров параметры скорости и дуплекса игнорируются.

Установка по умолчанию: включено автоматическое согласование на всех портах.

#### Пример:

Настройка порта Ethernet 1. Автоматическое согласование параметров выключено, скорость работы — 100 Мбит/с, Full Duplex, управление обменом данных выключено.

| imux>setpor | rt 1 disabl | e 100 full | disable |              |
|-------------|-------------|------------|---------|--------------|
| PORT        | AUTO        | SPEED      | DUPLEX  | FLOW-CONTROL |
| disable     | disable     | 100        | full    | disable      |

#### См. также:

| Команда  | Описание                                                  |
|----------|-----------------------------------------------------------|
| showport | Вывод информации о настойке потов Ethernet (см. п. 7.6.2) |

## 7.5.5 Добавление нового VLAN в таблицу

addvlan {VLAN-ID} {VLAN-members}

| Параметр     | Описание                                                                                     |
|--------------|----------------------------------------------------------------------------------------------|
| VLAN-ID      | Метка VLAN ID 802.1q, задаётся как десятичное число от 1 до 4095                             |
| VLAN-members | Заданный VLAN будет поддерживаться на указанных портах Ethernet, порты указываются через "," |

Команда добавляет VLAN в таблицу VLAN. Если включена поддержка VLAN, то устройство будет передавать только те VLAN, которые занесены в таблицу.

Установка по умолчанию: таблица содержит VLAN 1, поддерживаемый всеми портами Ethernet.

#### Пример:

Добавление в таблицу VLAN 25 с поддержкой первым, четвёртым и пятым портами Ethernet.

```
imux>addvlan 25 1,4,5

ID VLAN-ID VLAN-MEMBER

4 25 1,4,5
```

#### См. также:

| Команда     | Описание                                                             |
|-------------|----------------------------------------------------------------------|
| vlanaware   | Включение функции поддержки VLAN (см. п. 7.5.1)                      |
| vlanunaware | Выключение функции поддержки VLAN (см. п. 7.5.2)                     |
| delvlan     | Удаление VLAN из таблицы (см. п. 7.5.6)                              |
| setpvid     | Назначение метки VLAN и приоритетов на порту Ethernet (см. п. 7.5.8) |
| showvlan    | Вывод таблицы VLAN и состояния поддержки VLAN (см. п. 7.6.1)         |

## 7.5.6 Удаление VLAN из таблицы

#### delvlan {VLAN-ID}

| Параметр | Описание                                                         |
|----------|------------------------------------------------------------------|
| VLAN-ID  | Метка VLAN ID 802.1Q, задаётся как десятичное число от 1 до 4095 |

Команда удаляет VLAN из таблицы VLAN.

#### Пример:

Удаления из таблицы VLAN 25.

| nux>delvlan 25    |  |
|-------------------|--|
| LAN ID 25 delete. |  |

| Команда     | Описание                                                             |
|-------------|----------------------------------------------------------------------|
| vlanaware   | Включение поддержки VLAN (см. п. 7.5.1)                              |
| vlanunaware | Выключение поддержки VLAN (см. п. 7.5.2)                             |
| addvlan     | Добавление нового VLAN в таблицу (см. п. 7.5.5)                      |
| setpvid     | Назначение метки VLAN и приоритетов на порту Ethernet (см. п. 7.5.8) |
| showvlan    | Вывод таблицы VLAN и состояния поддержки VLAN (см. п. 7.6.1)         |

## 7.5.7 Настройка режима работы портов Ethernet

setportmode {port} {access | tag | hybrid}

| Параметр | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| port     | Номер порта Ethernet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| access   | Если на порт поступают кадры без метки VLAN, то устройство тегирует входящие<br>кадры меткой VLAN указанной в настройках команды <b>setpvid</b> . Если на порт<br>поступает тегированный кадр и метка VLAN в кадре совпадает с меткой VLAN<br>указанной в настройках команды <b>setpvid</b> , то кадр передаётся прозрачно. Если на<br>порт поступает тегированный кадр и метка VLAN в кадре не совпадает с меткой<br>VLAN указанной в настройках команды <b>setpvid</b> , то кадр отбрасывается.<br>С исходящих кадров снимаются любые теги. |
| tag      | Если на порт поступают кадры без метки VLAN, то устройство тегирует входящие<br>кадры меткой VLAN указанной в настройках команды <b>setpvid</b> . Если на порт<br>поступает тегированный кадр, то кадр передаётся прозрачно.<br>Исходящие кадры передаются прозрачно.                                                                                                                                                                                                                                                                         |
| hybrid   | Если на порт поступают кадры без метки VLAN, то устройство тегирует входящие<br>кадры меткой VLAN указанной в настройках команды <b>setpvid</b> . Если на порт<br>поступает тегированный кадр, то кадр передаётся прозрачно.<br>С исходящих кадров снимается тег, если метка VLAN была добавлена другим<br>портом данного коммутатора. Если метка VLAN была добавлена другим<br>устройством, то кадры передаются прозрачно.                                                                                                                   |

Команда настраивает режим работы портов Ethernet, порты могут работать в одном из режимов: access, tag, hybrid. Алгоритм работы портов приведён на Рис. 11.

Установка по умолчанию: все порты работают в режиме hybrid.

#### Пример:

Настройка порта Ethernet 1 в режим access.

```
imux>setportmode 1 access
Mode of Ethernet port 1: access
```

| Команда  | Описание                                                             |
|----------|----------------------------------------------------------------------|
| showport | Вывод информации о настройке портов Ethernet (см. п. 7.6.2)          |
| setpvid  | Назначение метки VLAN и приоритетов на порту Ethernet (см. п. 7.5.8) |

## 7.5.8 Назначение метки VLAN и приоритетов на порту Ethernet

setpvid {port} {VLAN-ID} {VLAN-priority}

| Параметр      | Описание                                                               |
|---------------|------------------------------------------------------------------------|
| port          | Номер порта Ethernet                                                   |
| VLAN-ID       | Метка VLAN ID 802.1q, задаётся как десятичное число от 1 до 4095       |
| VLAN-priority | Бит приоритета VLAN ID 802.1p, приоритет задаётся как десятичное число |
|               | от 0 до 7                                                              |

Команда устанавливает на заданном порте Ethernet метку VLAN и приоритет. Алгоритм работы портов приведён на Рис. 11.

#### Пример:

Присвоение первому порту Ethernet седьмого приоритета в 25-м VLAN.

```
imux>setpvid 1 25 7
PORT-ID PORT-VID USER-PRIORITY
1 25 7
```

| Команда  | Описание                                                    |
|----------|-------------------------------------------------------------|
| showport | Вывод информации о настройке портов Ethernet (см. п. 7.6.2) |



Рис. 11. Алгоритм работы портов Ethernet

# 7.5.9 Настройка принадлежности порта Ethernet к группе для приёма и передачи данных на остальные порты Ethernet

setporttable {port} {port-members}

| Параметр     | Описание                                                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------------|
| port         | Номер порта Ethernet                                                                                                   |
| port-members | Заданный порт Ethernet будет отправлять и принимать пакеты с указанных портов<br>Ethernet, порты указываются через "," |

Команда настраивает принадлежность порта Ethernet к группе портов Ethernet, между которыми будет происходить обмен данными.

#### Пример:

Настройка принадлежности порта Ethernet 1 к группе портов Ethernet 4 и 5, между которыми будет происходить обмен данными.

## 7.6 Мониторинг состояний коммутатора Ethernet

## 7.6.1 Вывод таблицы VLAN и состояния поддержки VLAN

#### showvlan

Команда выводит полную таблицу поддерживаемых VLAN и отображает состояние функции поддержки VLAN.

#### Пример:

Вывод таблицы VLAN и вывод информации о состоянии функции поддержки VLAN.

| imux> | showvlar | n    |      |        |
|-------|----------|------|------|--------|
| ID    | VLAN I   | ID V | LAN  | MEMBER |
| 1     | 1        | 1    | ,2,3 | 3,4,5  |

IEEE802.1Q VLAN : DISABLE

#### См. Также:

| Команда     | Описание                                         |
|-------------|--------------------------------------------------|
| vlanaware   | Включение функции поддержки VLAN (см. п. 7.5.1)  |
| vlanunaware | Выключение функции поддержки VLAN (см. п. 7.5.2) |
| addvlan     | Добавление нового VLAN в таблицу (см. п. 7.5.5)  |
| delvlan     | Удаление VLAN из таблицы (см. п. 7.5.6)          |

## 7.6.2 Вывод информации о настройке портов Ethernet

### showport

Команда отображает настройки портов Ethernet.

#### Пример:

Вывод настроек портов Ethernet

| imux>showport       |          |        |        |        |        |         |              |      |          |
|---------------------|----------|--------|--------|--------|--------|---------|--------------|------|----------|
| Configure settings: |          |        |        |        |        |         |              |      |          |
| ID                  | AUTO     | SPEED  | DUPLEX | FLOW   | MODE   | VLAN ID | PORT MEMBERS | VLAN | PRIORITY |
| ===                 |          |        |        |        |        |         |              |      |          |
| 1                   | enable   | 100    | full   | enable | hybrid | 1       | 1,2,3,4,5    | 0    |          |
| 2                   | enable   | 100    | full   | enable | hybrid | 1       | 1,2,3,4,5    | 0    |          |
| 3                   | enable   | 100    | full   | enable | hybrid | 1       | 1,2,3,4,5    | 0    |          |
| 4                   | enable   | 100    | full   | enable | hybrid | 1       | 1,2,3,4,5    | 0    |          |
| 5                   | enable   | 100    | full   | enable | hybrid | 1       | 1,2,3,4,5    | 0    |          |
|                     |          |        |        |        |        |         |              |      |          |
| Cur                 | rent set | tings: |        |        |        |         |              |      |          |
| ID                  | SPEED    | DUPLE  | Х      |        |        |         |              |      |          |
| ===                 |          |        | ==     |        |        |         |              |      |          |
| 1                   | 10       | half   |        |        |        |         |              |      |          |
| 2                   | 10       | half   |        |        |        |         |              |      |          |
| 3                   | 10       | half   |        |        |        |         |              |      |          |
| 4                   | 10       | half   |        |        |        |         |              |      |          |
| 5                   | 10       | half   |        |        |        |         |              |      |          |

#### Примечание:

| Параметр           | Описание                                                               |
|--------------------|------------------------------------------------------------------------|
| ID                 | Номер порта Ethernet                                                   |
| AUTO               | Автоматическое согласование параметров скорости и дуплекса в портах    |
|                    | Ethernet                                                               |
| SPEED              | Скорость работы порта (10 или 100 Мбит/с). Если включён режим          |
|                    | автоматического согласования параметров, то эта настройка игнорируется |
| DUPLEX             | Режим работы порта (дуплексный или полудуплексный) Если включён режим  |
|                    | автоматического согласование параметров, то эта настройка игнорируется |
| FLOW               | Управление потоком данных                                              |
| MODE               | Режим работы порта (Access, Tag, Hybrid)                               |
| VLAN ID            | Номер VLAN в заданном порте                                            |
| PORT MEMBERS       | Номера портов Ethernet, с которых могут приниматься и отправляться     |
|                    | пакеты на указанный порт Ethernet                                      |
| VLAN PRIORITY      | Приоритет в поле VLAN на заданном порту                                |
| Configure settings | Настройки портов Ethernet                                              |
| Current settings   | Текущие настройки скорости и дуплекса                                  |

#### См. также:

| Команда | Описание                                                             |  |  |  |  |
|---------|----------------------------------------------------------------------|--|--|--|--|
| setport | Настройка портов Ethernet (см. п. 7.5.4)                             |  |  |  |  |
| setpvid | Назначение метки VLAN и приоритетов на порту Ethernet (см. п. 7.5.8) |  |  |  |  |

## 7.6.3 Вывод статистики по портах Ethernet

#### showethperform {port | all}

| Параметр | Описание                                                        |
|----------|-----------------------------------------------------------------|
| port     | Номер порта Ethernet, по которому необходимо вывести статистику |
| all      | Вывод статистики из всех портов Ethernet                        |

Команда выводит статистику количества переданной информации и количества ошибок на портах Ethernet.

Вывод статистики из порта Ethernet 2

```
imux>showethperform 2

PORT-ID: 2
RX-ALLPACKETS : 0 , 0
RX-ALLBYTES : 0 , 0
RX-BROADCAST : 0 , 0
TX-ALLPACKETS : 0 , 0
TX-ALLPACKETS : 0 , 0
TX-ALLBYTES : 0 , 0
RX-ERRORPACKETS: 0 , 0

Description :
    Perform_Counter (H32) , (L32) = (H32) << 32 | (L32) ;
        H32 : High 32 bits; L32 : low 32 bits</pre>
```

См. также:

| Команда      | Описание                           |  |  |
|--------------|------------------------------------|--|--|
| clearperform | Очистка статистики (см. п. 7.1.11) |  |  |

## 7.6.4 Вывод информации о состоянии портов Ethernet

#### showethstatus

Команда отображает наличие (отсутствие) связи портов Ethernet с подключённым оборудованием.

#### Пример:

Вывод состояний портов Ethernet.

| imux>s | showethstatus |  |  |  |
|--------|---------------|--|--|--|
| ID     | STATUS        |  |  |  |
| =====  |               |  |  |  |
| 1      | No link       |  |  |  |
| 2      | No link       |  |  |  |
| 3      | No link       |  |  |  |
| 4      | No link       |  |  |  |

## 8 Загрузка новой версии программного обеспечения

Процедура загрузки программного обеспечения заключается в копировании файла с расширением zlx с сервера во Flash-память изделия. При этом используется протокол FTP (File Transfer Protocol).

Внимание! Загрузка неверного файла с программным обеспечением приведёт к неработоспособности устройства! Перед обновлением ПО убедитесь, что загружаете правильный файл. В случае выхода мультиплексора из строя в результате загрузки не неверного файла с ПО ремонт осуществляется за счёт покупателя

Для загрузки программного обеспечения выполните следующие действия:

- 1. Загрузите файл с программным обеспечением с сайта <u>www.zelax.ru</u> или получите его по электронной почте. При обращении по электронной почте отправьте письмо по адресу <u>tech@zelax.ru</u> с темой "Программное обеспечение для ГМ-2-IMUX".
- 2. Включите FTP-сервер. Скопируйте файл программного обеспечения в базовую директорию сервера.
- 3. Подключите порт Ethernet (MNT) изделия к сети. Примеры подключения показаны на Рис. 12.
- 4. Настройте параметры изделия (IP-адрес, маску сети и т. д.) для доступа к сети.
- 5. Загрузите файл программного обеспечения с FTP-сервера, используя команду download с указанием следующих параметров:
  - IP-адрес сервера;
  - имя пользователя;
  - пароль;
  - имя копируемого файла.

После загрузки программного обеспечение произойдет верификация и установка всех его компонентов.

6. Перезагрузите изделие, выполнив команду reset.

Примечание: после обновления программного обеспечения изделие принимает заводские настройки.



#### Рис. 12. Примеры подключения изделия для обновления программного обеспечения

## 9 Рекомендации по устранению неисправностей

Изделие представляет собой сложное микропроцессорное устройство, поэтому устранение неисправностей, если они не связаны с очевидными причинами — обрывом кабеля питания, механическим повреждением разъёма и т. п. — возможно только на предприятии-изготовителе или в его представительствах.

При возникновении вопросов, связанных с эксплуатацией изделия, обращайтесь, пожалуйста, в службу технической поддержки компании Zelax.

## 10 Гарантии изготовителя

Изделие прошло предпродажный прогон в течение 168 часов. Изготовитель гарантирует соответствие изделия техническим характеристикам при соблюдении пользователем условий эксплуатации, транспортирования и хранения.

Срок гарантии указан в гарантийном талоне изготовителя.

Изготовитель обязуется в течение гарантийного срока безвозмездно устранять выявленные дефекты путём ремонта или замены изделия или его модулей.

Если в течение гарантийного срока:

- пользователем были нарушены условия эксплуатации, приведенные в п. 4.7, или на изделие были поданы питающие напряжения, не соответствующие указанным в п. 4.5;
- изделию нанесены механические повреждения;
- порты изделия повреждены внешним электрическим воздействием,

то ремонт осуществляется за счет пользователя.

Доставка неисправного изделия в ремонт осуществляется пользователем.

Гарантийное обслуживание прерывается, если пользователь произвел самостоятельный ремонт изделия.

## Приложение 1. Назначение контактов порта Ethernet

|         | Номер<br>контакта | Наименование<br>сигнала |
|---------|-------------------|-------------------------|
|         | 1                 | Tx+                     |
|         | 2                 | Tx-                     |
|         | 3                 | Rx+                     |
| ō ī     | 4                 | Не используется         |
| Розетка | 5                 | Не используется         |
| RJ-45   | 6                 | Rx-                     |
|         | 7                 | Не используется         |
|         | 8                 | Не используется         |

# Приложение 2. Назначение контактов порта Console

|         | Номер<br>контакта | Наименование<br>сигнала |
|---------|-------------------|-------------------------|
|         | 1                 | Не используется         |
|         | 2                 | Не используется         |
|         | 3                 | Не используется         |
| ð I     | 4                 | Не используется         |
| Розетка | 5                 | Не используется         |
| RJ-45   | 6                 | S.GND                   |
|         | 7                 | TD                      |
|         | 8                 | RD                      |

# Приложение 3. Назначение контактов порта Е1

|         | Номер<br>контакта | Наименование<br>сигнала |
|---------|-------------------|-------------------------|
|         | 1                 | RD+                     |
|         | 2                 | RD-                     |
|         | 3                 | Не используется         |
| 0 1     | 4                 | TD+                     |
| Розетка | 5                 | TD-                     |
| RJ-45   | 6                 | Не используется         |
|         | 7                 | Не используется         |
|         | 8                 | Не используется         |

## Приложение 4. Схема переходника А-006

| RJ-45 |   | _ |   | DB-9  |
|-------|---|---|---|-------|
| RTS   | 1 |   | 7 | RTS   |
| DTR   | 2 |   | 4 | DTR   |
| TD    | 3 |   | 3 | TD    |
| S.GND | 4 |   | 5 | S.GND |
| DCD   | 5 |   | 1 | DCD   |
| RD    | 6 |   | 2 | RD    |
| DSR   | 7 |   | 6 | DSR   |
| CTS   | 8 |   | 8 | CTS   |

## Приложение 5. Схема консольного кабеля

| RJ-45            |   |       | RJ-45            |
|------------------|---|-------|------------------|
| TD               | 3 | <br>7 | TD               |
| Сигнальная земля | 4 | <br>6 | Сигнальная земля |
| RD               | 6 | 8     | RD               |
| Terminal         |   |       | IMUX             |

Длина консольного кабеля — 2 м.